Please note;

If you experience some difficulty in viewing some
of the pages, use the magnifying tool to enlarge the
specific section

UCRL- 92867
PREPRINT

JRCULAT 0N
e I0] = 8] LRI pSENE
iIN TWO WEEKS

RESULTS AND COMPARISONS IN MULTIPROCESSING USING VMS 4.0 AND MA780

N. E. Werner

This paper was prepared for submittal to
Digital Equipment Computer Users Society
Spring 1985,

New Orleans, LA,

May 27-31, 1985

June 1985

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

DISCLAIMER

This dacument was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to amy specific
commercial products, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or the University of California, and shall not
be used for advertising or product endorsement purposes.

RESULTS AND COMPARISONS IN MULTIPROCESSING
USING VMS 4.0 AND MA780%

Nancy E. Werner
Lawrence Livermore National Laboratory
P.0. Box 808, M3 L306
Livermore, CA 94550

Abstract

Experiments using different parallel processing techniques on
selected parallel algorithms were performed. Relative
performance of these techniques was observed. The hardware was]
clustered Vax-780s with 14 to 16 Megabytes each of local memory

and 4 Megabytes of shared memory

INTRODUCTION

Parallel processing is the ART of doing multitasking
on more than one processor, where multitasking 1is
the splitting up of a Job into many separate

Tasks. Normally these Tasks need to communicate
with each other in order to complete the Job. In a
tightly coupled system, they will use Shared Memory
for communication. In a loosely coupled system,
they will send messages to each other via a common
bus such as the CI Bus. With the present hardware,
four clustered Vax-780s with 16 Megabytes, 14
Megabytes, 14 Megabytes, 14 Megabytes local memory
respectively and 4 Megabytes shared memory, either
method of communication could be used. Only the
tightly coupled method has been pursued so far and
will be discussed here.

MOTIVATION

Lawrence Livermore National Laboratory (LLNL) also
has on site a four processor CRAY computer, the XMP-
48. It would be nice if users could become
famliliar with parallel processing on a cheaper,
friendlier and more accessible environment than is
yet offered on the CRAY. The Vax System's main
purpose is for parallel processing research; there
are no production jobs to worry about, and dynamic
debugging tools are available.

Most potential users at LLNL are not familiar with
VMS. 1In order to lure them onto the VAX System, it
was necessary to imitate the environment of the CRAY
as much as possible. CRAY users were using a set
of primitives devised by Cray Research Inc. (CRI)
which were referred to as the "CRI Multitasking
Primitives"[1]. These are simply a library of
routines which were designed to be used for
implementing parallel processing algorithms. A
gimilar library was implemented on the VAX System to
be as consistent as possible with the CRI library
[2]. Programs which run on the CRAY, with minor
modifications, can also run on the VAX System,
within memory size limitations. Programs have been
debugged on the VAX System and then successfully
moved onto the CRAY.

(2 MAT780s).

PARALLEL PROCESSING DEFINITIONS

There are some basic things one must do for parallel
processing that are not necessary for sequential
processing. It must be possible to define Tasks
which can execute on the available processors. The
consistency of the shared data must be assured;
simultaneous updates to the same data must be
avoided. A section of code that alters shared data
must be executed by only one processor at a time;
such a section of code is called a Critical Section.
The Tasks often must synchronize their activities
with each other. A place at which Tasks need to meet
before proceeding with the computation is called a
Barrier.

A Logical Processor is a process which has been
initiated at Job submittal time and is scheduled by
the Operating System on the VAX on which that
process resides. A TASK is an instantiation by a
Logical Processor of a subroutine call with shared
memory arguments. When the TASK has completed
{returned), the Logical Processor is free to
activate another TASK.

To implement a Critical Section , a LOCK can be
used. A LOCK is a resource protector; only one TASK
at a time is allowed to have a specified LOCK. If a
LOCK is gotten before entering a section of code ,
then anyone else attempting to get that LOCK must
wait until it is released. When the Critical Section
of code has been completely executed, the TASK
should then release the LOCK to allow another TASK
which has also requested this LOCK to proceed. The
same LOCK should be used for related Critical
Sections which affect the same data.

Barriers can be implemented using EVENTs and/or
LOCKs. An EVENT is a system wide signal that can be
set, tested and cleared by all TASKs working on this
Job. There are many ways to implement a Barrier.
Odne example i3 given in Appendix B.

PARALLEL PROCESSING LIBRARY

The library implemented for VMS contains not only
those subroutines as defined by CRI, but also by

¥ This work was performed under the auspices of the U.S. Department of Energy

by Lawrence Livermore under Contract No. W-7405-Eng-u8.

necessity ,some special subroutines which must be
used to map and unmap predefined areas of data to
the shared memory. To facilitate this mapping, the
user must place all his shared data into a common
block named /SHAREDGLOBAL/. The library will also
map some of its own data to shared memory. Other
subroutines were added to provide more
functionality.

DATA DEFINITIONS

The data was set up to be compatible with the CRI
definitions as far as possible. Please note that an
integer is 32 bits on the VAX and 64 bits on the
CRAY.

Taskarray: 2-3 integers used to hold TASK
information as follows:

count: number of integers in this
array (set by user)

pointer: pointer to library data for
this TASK (used only by library)

Taskvalue: optional value associated
with this Task (set by user)

Name: subroutine name (entry point for TASK

instantiation)

List: argument list for subroutine
(addresses of arguments {must be in shared
memory})

Taskvalue: user defined value (32 bits)

Lockdata: integer used to represent a LOCK
(defined by user, manipulated by
library)

Eventdata: integer used to represent an EVENT
(defined by user, manipulated by
library)

First _shr: address of the first data item
in shared memory
(%loc(*) where common/sharedglobal/*..../)

Last shr: address of the last data item in
shared memory
(%loc(*) where common/sharedglobal/....*/)

Dbug: integer flag which will cause library
to write tasking information to the
log file if > O

SPECIAL SUBROUTINES

Task init (First_shr, Last shr, Dbug)

Subroutine which maps the shared data

to shared memory. It must be called
before any shared data is used. It

also sets up the Task cleanup

subroutine as an exit handler. -2-

Task_cleanup

Subroutine which unmaps the shared
memory .

CRI COMPATIBLE SUBROUTINES

Tskstart (Taskarray, Name [,List])
Startup the TASK associated with
Taskarray by calling subroutine Name
with arguments List.

TskWait (Taskarray)
Wait for the TASK associated with
Taskarray to complete.

Logical = Tskteat (Taskarray)
If the TASK associated with Taskarray
exists, then set Logical = .true.

TskValue (Taskvalue)

Retrieve the value for this TASK.

Lockasgn (Lockdata)
Assign and initialize the LOCK
associated with Lockdata.
Lockrel (lockdata)

If there are no waiters release the
LOCK associated with Lockdata

otherwise set error condition.
Lockon (Lockdata)

If the LOCK associated with Lockdata
is busy then wait,

otherwise get the LOCK.

Lockoff [Lockdata)
Relinquish the LOCK associated with
l,ockdata.

l.ogical = Locktest (Lockdata)

{f the LOCK associated with Lockdata
was already on,
3et Logical = .true. and return

otherwise get the LOCK and
set Logical = .false.

Evasgn (Eventdata)
Assign and initialize the EVENT

assoclated with Eventdata.

Evrel (Eventdata)

If there are no waiters,
release the EVENT associated with
Eventdata

otherwise set error condition.

Evpost (Eventdata)

Post the EVENT associated
Eventdata.

with

Evclear (Eventdata)

Clear the EVENT associated with
Eventdata.

Evwait (Eventdata)

Wait for the EVENT associated with
Eventdata to be posted.

Logical = Evtest (Eventdata)
If the EVENT associated with Eventdata
was posted, Logical = .true.

otherwise Logical = .false.

ADDITIONAL SUBROUTINES

These subroutines can be used to obtain a
chronological log of what is happening during a
Job. If the Job is running on more than one VAX ,
the time is not a correct indicator since each VAX
has a separate clock and they are not synchronized.

Open_shared (Unit, Filename, Record size)

The file Filename is opened as a
shared relative file with maximum
record size = Record size and
associated with Unit. If being called
by Fortran, Unit is also the unit
number .

Close_shared (Unit)

The file associated with Unit is closed
and reset.

Ge;_nxtrec (Unit, Record_pumber, Count)

The next Count records are reserved on
the file associated with Unit and the
first of these record numbers is
returned to Record number.

Another set of subroutines was implemented to
facilitate dynamic partitioning of the Job's work
among the TASKS. A unique set of mailboxes may be
set up with specified message size with which TASKS
may communicate. Dynamic partitioning is achieved
by dividing the work up and then putting the pieces
into a mailbox queue; each TASK that is doing that
work can then retrieve pieces of the work until the
work is completed and the mailbox is empty.

Setup sr (Mbx_array, Count, Mbx size, Code)
Set up Count mailboxes whose message
size is Mbx_size and whose unique
identifier will be Code. The channel
number for each mailbox initialized
will be placed in

Mbx_array(1 - Count).

Send sr (Mbx array(Il), Buffer, Msg size)

Send the message with size Msg_size
which had been placed in Buffer to the
mailbox referred to by Mbx array(I).

Receive sr (Mbx array(I), Buffer, Msg_size)

Wait for a message from the mailbox
referred to by Mbx array(I) to be
read into Buffer , whose size is
Mag_size.

UTILITIES

A set of utilities have been implemented to make
Paraliel Processing on the VAX system easier for the
user. These utilities are really command files
which have had symbols defined for them.

Cricomplink Program Compiler
This utility will compile and link
Program using the compiler indicated by
compiler, which may include optional
parameters. It is helpful to use this
utility because it handles special
linking problems caused by shared
memory access.

Crisetup Program Maxlog

This utility creates a set of command
files for setting up the environment of
this Program and also some debugging
command files for use with the Parallel
Debugger which assumes that the maximum
number of logical processes used will
be Maxlog. This needs to be executed
only once for this Program unless the
Parallel debugger is being used and
Maxlog needs to be larger.

Criloglcals Program

This utility defines the logical names
necessary to map to the shared

memory. If this is not executed, local
memory will be used exclusively.

Crisubmit Program

Logepu Physcpu [After timel

This utility starts up Program in
Logecpu processes (logical cpus) on
Physcpu processors (physical cpus) at
time = After time if present, otherwise
now. In VMS terms, a command file
whic¢h was setup for this program when
Crisetup was executed, which in turn
executes Crilogicals and then runs
Program, is submitted to a generic
batch queue Logepu times. The generic
queue will alternate the submittal
amongsat queues on Physcpu VAXs. Thus
there will be Logcpu processes running,
divided evenly amongst Physcpu
processors.

Cricleanup

This utility needs to be executed only
if there was an abnormal exit or the
user wishes to abort the Job. Using a
command file which was generated when
Crisubmit was executed, it will remove
any left over batch processes and
delete shared memory access for the
last Job submitted.

Cridebug Program Logcpu Physcpu

This utility starts up Program in
Logcpu processes (logical cpus) on
Physcpu processors {physical cpus) with
the Parallel Debugger enabled.

IMPLEMENTATION

The implementation of the Parallel Processing
Library on VMS was done using shared memory to store
library information and interlocked instructions to
update this information. Normally, temporary
mailboxes in shared memory were used , which
automatically go away when the Job completes. The
shared memory must be mapped to a permanent global
section and thus must be specifically deleted by
the exit handler when the Job completes.

The root TASK of a parallel processing program is
the program itself, all other TASKs are subroutines
Within that program. The same copy of the program
is executed in all of the processes. The first
process to execute the call to Task init becomes the
root TASK. The root TASK creates the necessary
shared memory global sections , creates the Tasking
mailbox and associlates an exit handler for Job
cleanup and termination. After the return from

Task init, it will continue executing the program.

All other processes become slaves., A slave process -4-

also executes the call to Task init, but after
mapping to the shared memory global sections and to
the Tasking mailbox which had been created by the
root TASK, it will then perform a read on the
Tasking mailbox and wait for a message. The slave
processes will never proceed beyond the call to Task_
init except to make subroutine calls requested by
the Tasking mailbox message. Whenever Tskstart is
called, a message is placed in the Tasking mailbox
which indicates the subroutine Name to be called and
its arguments. One and only one of the slave
processes will receive that message; if a TASK is to
be started, it will set up a taskblock for that TASK
in shared memory, mark it valid, and then generate a
call to that subroutine with the appropriate
arguments. Upon returning from that subroutine, it
will mark the TASK done. In order to wake up any
other TASKs which might be waiting for this TASK,
it will create a unique mailbox associated with that
TASK, write to it, and then delete it. Having
finished the business of that TASK, it will read the
Tasking mailbox again to look for another TASK to
do. When the process receives a DONE message in the
Tasking mailbox, it will pass the message on and
then commit suicide. The root TASK will
automatically place the initial DONE message in the
Tasking mailbox when it is finished by automatically
using the exit handler that was set up by the call
to Task_init.

The EVENT mechanism merely uses the VMS Common Event
Flag clusters in shared memory.

The LOCK was implemented two ways. The first
implementation did not care about the order in which
the lock was granted. A LOCK was obtained by
performing an interlocked decrement on the semaphor
represented by Lockdata. If the LOCK was available,
the process proceeded, otherwise it waited for an
Event Flag which had been associated with that LOCK
by the Lockasgn call. Lockoff did an interlocked
increment on this semaphor and then set the Event
Flag associated with this LOCK. Whichever TASK
reacted the fastest got the LOCK next, there was no
fairness criteria, This implementation appeared to
be sufficient for a while. Later, a program, which
used Locking in its Barrier implementation and
synchronized on Barriers frequently, displayed
very erratic behavior when executing on all 4
processors. This behavior was finally traced to a
semi "starvation" effect caused by the unfair
Locking mechanism. Processes were waiting
excessively long within the Barrier due to lack of
fair access to the LOCK which was used in that
Barrier implementation. The Barrier was rewritten
without the use of LOCKs and the erratic behavior
disappeared. However, because of the possible
"starvation" problem, it was decided to re-implement
the Locking mechanism using an interlocked first
in, first out (FIFO) queue. 1In addition to a
semaphor, an interlocked queue was associated with
each LOCK , both were represented by Lockdata. If a
LOCK is not available, the Pid of the process
requesting the LOCK and the nodename of its
Processor are placed in the queue. When the LOCK
becomes available, an entry is removed from the
queue for that LOCK; if the waiting process resides
on the same Processor, it is awakened. If the
waiting process is on a different Processor from the
proces: relinquishing the LOCK, a message i3
placed in a permanent shared mailbox associated

with that Processor. A server process responds to
this message and wakes up the appropriate process
on its Processor. The Program was retried with the
old Barrier implementation and the new Lock
implementation. The previous erratic behavior was
not observed.

In order to allow processes to record their behavior
in a synchronous manner, a set of subroutines was
implemented which allows the user to easily write
ordered records to a shared relative file; which may
then be printed or otherwise interrogated. The last
record used is noted in a shared memory array
indexed into by the Unit number for that file.

To make dynamic load balancing easier, a set of
subroutines was implemented for setting up, and
reading and writing to shared mailboxes. The user
must determine what information is necessary to
indicate the next work item and must put that
information into a buffer of appropriate size.

After the mailbox has been setup, subsequent writes
and reads to/from this mailbox will enter and remove
items to/from the work queue represented by this
mailbox.

RESULTS

Using the Parallel Processing Library described
above, experiments were performed to investigate the
benefits and the costs of parallel processing. For
benchmarking purposes, two methods were used to
implement Barriers (see Appendix A). These methods
were implemented in assembly language in order to
make them as fast as possible. Another method was
implemented and tested using EVENTs and the Parallel
Processing Library (see Appendix B); while using
the other Barrier method, the elapsed time did not
vary significantly from the first two Barrier
methods. The first Barrier method, Method E,
relinquishes the CPU (Processor) when it must wait
at a Barrier and waits for an Event Flag associated
with this Barrier to be set. The second Barrier
method, Method S, spins , testing the shared memory
location associated with this Barrier until it is
ready. The difference in CPU time used by the two
methods is the time that is spent waiting for the
other Tasks to reach the Barrier.

The cost of using Barriers can be broken into
components. There is the cost of the extra
computations necessary to implement the Barrier;
there is the cost of waiting within the Barrier due
to resource contention, and there is the cost of
waiting for the other TASKs to reach the Barrier.
The last component can be estimated by using both
kinds of Barriers and comparing the CPU times used.
The second component is negligible for Method S ,
since the only resource contention present is a
3ingle interlocked decrement that occurs for each
TASK when it first reaches the Barrier. Method E
Wwill have more resource contention due to its use of
event flags. The first and second components were
estimated by timing 100 loops of 60 consecutive
Barrier calls, for Method E and for Method S. This
test was run with from 1 to 4 TASKs, each with its
own Processor. Method S took approximately .0001

5

seconds per Barrier, per TASK, no matter how many
TASKs were running simultaneously. Method E took
longer due to its use of event flags. As more TASKs
participated, this become worse due to the added
resource contention ; its time varied from .0006
seconds to .002 seconds depending on the number of
TASKs participating.

Assuming a UNIT of COST to be the cost of a single
+,-,% floating point type operation, the COST of a
Lockon followed by a Lockoff, the COST of an Evpost
followed by an Evclear, and the COST of the Barriers
S and E were measured , varying the number of
participating TASKs, each with its own Processor,
from 1 to 4. See Table 1 for complete results. The
COST for Locking varied from 9 to 65 units,
depending on the number of TASKs, due to LOCK
contention. The COST of Events varied less, from 33
to 46 units. The COST of Barrier E varied from 37
to 106 units, but the COST of Barrier S remained
fairly constant at 7 units. Even though Barrier S
appears to be cheaper, further results showed that
the first two components of cost of a Barrier, which
this test measures, are not the most important.
Also, If the Processors are being shared, Barrier S
would be wasting CPU cycles that others could be
using. Another interesting side result of this
experiment was that Barrier S, which uses shared
memory heavily, did not degrade the performance of
the System. This would seem to indicate that a
potential hardware problem, shared memory
contention, was not a problem in these experiments.

A standard LLNL benchmarking code named Simple, a
hydrodynamic calculation with heat conduction, was
used for further investigations. A grid size of 80
x 100 was used for 100 time cycles. There were 14
Barrier synchronizations performed per time

cycle. Both Barrier methods (S,E) were used. The
number of TASKs (Processors) working on the problem
varied from 1 to 4. The number of Logical Processors
actually working on the problem was never greater
than the number of Physical Processors. No other
users were on the System during benchmarks. At
each Barrier call, for each TASK, data was saved
indicating when the Barrier was entered and when it
was exited. Jpon termination of the Job, this data
was processed All the Barrier delays were summed
and averaged among the number of TASKs (WTave).
Also, at each Barrier, the maximum delay amongst the
partizipating Tasks was found, and these were summed
(WTM' . From the logs, the CPU usage for Barrier E
was suabtracted from the CPU usage for Barrier S and
the difference was divided by the number of
part::ipating Tasks to give the average wait at a
Barrizr (Wave), With complete parallelism, if one
TASK takes X seconds to complete the Job, then N
TASKs should take X/N seconds. If T is the time
that it actually took to run the Job with N TASKs,
then iet D be the Discrepancy, where D = (T - X/N).
The speedup is usually a measure of how much
parailelism was actually achieved. Speedup(N) =
Elaps=2d time For one TASK/ Elapsed time for N TASKs.

The first experiments were done using fixed
partitioning of the work load. The work was
divided up equally amongst the Tasks before starting
the Job. The time for 1 Task to complete the Job was
1600 seconds. A Job was run using 4 Tasks and
bypassing the synchronization; the answers were
wrong, but the Speedup was = U! Using the Barrier
synctronizations, Speedup(2) = 1.95, Speedup(3) =

2.85, Speedup(4) = 3.7. The Speedup did not vary
significantly as a function of the Barrier
implementation method used, including the one in
Appendix B. For complete results, see Table 2. The
total cost of the Barriers (first and second
components) of this Job is approximately = cost of a
single Barrier X 14 X 100. Therefore, Barrier E
cost from .8 to 2.8 sec depending on the number of
Tasks. Barrier S cost approximately .14 sec. In any
case, the cost is < 1% of the total cost of the

Job., Then, why isn't the Speedup better? It appears
that the third component of the Barrier cost, the
walt at the Barriers for the other TASKs, is the
primary expense in Barrier synchronization for this
Job. Even if this Job has exclusive use of the
System, it stlll does not have exclusive use of the
Processors. The Operating System must continue to do
its work { cluster management, accounting, error
logging, etec). Bare in mind that there is not 1
Operating System, but rather 4 Operating Systems
involved. If any of these Operating System uses CPU
cycles, the TASK being run under that Operating
System will be delayed, and all other TASKs will
have to wait for the delayed TASK when a Barrier is
encountered. Figure 1 shows a scatter plot

showing the distribution of the sizes of the
maximum waits at the Barriers, looking at all 14
barriers, but only 20 cycles worth of data. Figure 2
shows a plot of how the size of the maximum wait at
a single Barrier varies, using the same 20 cycles
worth of data.

Table)

COST OF PARALLEL PROCESSING

Definitlon:

UNIT of COST = one L Operation
FUNCTION COST (1 CPU) COST (2 CPUS) COST (3 CPUS) COST (4 CPUS)
LOCK (ON/OFF) 9 10 a2 65
EVENT (POST/CLEAR) 33 43 46 uy
JARRIER (E) 37 78 92 106
AARRIER (3) 6 1 7 7
Table 2
SIMPLE WITH FIXED EQUAL PARTITIONS
#PROCESSORS SPEEDUP ELAPSED D Wave WTave WTM
TIME

T 1.00 1600 00 00 00 00

2 1.95 820 20 15 20 38

3 2.85 560 27 13 15 30

4 3.70 430 30 16 21 us5

.00 NO SYNCHRONIZATION

SIZES OF MAX WAIT AT BARRIERS
4 PROCESSORS A 3 PROCESSORS 0

COUNT 2 PROCESSORS ©
»15
15 A
14
13 |
12 &6 &
1" .
10 4QA
9
8
7 A
6
5 4 AA
L
4 oY I ? . Y
3 o0 lwl £ A0
2 24—a E-aﬁf S Y
1 [} O Ad ©60
S dociood ¢ §© 0AC
o
d 1 6 7 B 9 10 11 >11

23 4 5
DELAY SIZE (.01 SECONDS)
figure 1

If the Barriers are few, with a large amount of work
being done in between, these delays might
statistically even out amongst the TASKs, causing
less delay at the Barriers due to waiting for each
other. 1In other words, the larger the granularity
of the problem between Barriers, the more efficient
use the Job will make of the Processors.

SIZES OF MAX WAIT AT BARRIERS
4 PROCESSORS A 3 PROCESSORS {
CQ?;‘T 2 PROCESSORS ©

15

14

13

12 |

n [
10

~
t——]
]
s
|

&
. \
4
) I/ \
VAR AR
.])
Ut
D
23 4 5 6 7 8 9 10 11 >11
DELAY SIZE (.01 SECONDS)
figure 2

Work partitioning was investigated next. The work
was divided up into Work Queues with a fixed number
of items in each queue. Each TASK is allowed to
remove items from the queue until that work is
completed, at which time a Barrier is usually
encountered. As items are removed from one Work
Queue and worked on, they are generally inserted
into the next work queue. It was found that the
overhead cost of using Work Queues was approximately
.003 seconds or 120 COST UNITS per Work Item, per
Barrier (see Table 3).

Table 3

SIMPLE WITH DYNAMIC PARTITIONING

OVERHEAD OF WORK QUEUES (! PROCESSOR)

WORK ITEMS ADDED ELAPSED TIME

(seconds)

o]
20
40
60
80

000
080
170
250
350

OVERHEAD approximately = 4 seconds per Work Item, per Job

= .003 seconds or 120 Cost UNITS
per Work Item, per Barrier

If a Job takes 1600 seconds for 1 Processor to
complete, the best that can be done with 4
Processors would be 400 seconds. The Overhead can be
estimated to be the Actual CPU Usage per Processor -
Best Possible CPU Usage per Processor. The Delay at
the Barriers 1s again estimated by comparing the CPU
usage of the two different Barrier implementations.
As we can see from Figure 3, as the number of work
items in the Work Queue increases, the delay at the
Barriers tends to go down, but the overhead goes

up. In fact, from Figure 4, it is evident that for
this Job, the Fixed Partitioning Method is superior
to the Dynamic Partitioning Method. The Overhead of
Dynamic Partitioning exceeds any Delays caused by
the work load imbalance of this Job.

SIMPLE
4 PROCESSORS

TIME QO delay O overhead
(sec)

00

80 0

o D

40

20

L |

20 40 60 80 # WORK
ITEMS

figure 3

-7-

SIMPLE
4 PROCESSORS
$LAPSED
IME
(sec) 560 T ic
520 i =
480
440 Figed
a00 _BEST
360
20 40 60 80 # WORK
ITEMS
figure 4

The expected Elapsed Time for a Job can be estimated
to be the average CPU used (per Processor) plus the
average Delay at the Barrlers., We can then guess
the CPU utllization for this Job when it is
executing to be the Estimated Elapsed Time divided
by the Actual Elapsed Time. These results are shown
in Table 4. The Job was monitored during its
execution and the estimated CPU utilization numbers
were actually observed to be true., It is assumed
that not only was the Job doing more work when using
Work Queues, but the Operating System was also doing
more work,., Even though Work Queues were not the most
efficient implementation of this Job in an exclusive
environment, that does not mean that they won't be
for another Job which has to deal with greater load
imbalance problems or even ,perhaps, has to share
the system with "other" users!

Table U

SIMPLE, FIXED SQUAL PARTITIONING VERSUS DYNAMIC PARTITIONING

BARRIER ACTUAL EST.

METHOD # WORK ELAPSED CPU OVERHEAD Wave WTave WTM ELAPSED %CPU
YTEMS TIME AVE TIME UTI.

FIXED 116 405 05 16 21 45 u21 98

DYNAMIC 20 320 u2s 25 80 80 200 505 97
[T} 500 445 45 40 40 115 485 97
50 510 465 65 25 25 S5 490 96
30 540 485 85 30 30 100 515 95

SUMMARY

Many things were learned from these parallel
processing experiments. Mostly, it was learned that
parallel processing is not easy. The difficulties
in constructing a "correct" program and knowing that
it is indeed "correct" were not even discussed.

Some factors that might influence implementation
techniques were explored. The efficiency of these

techniques depends not only on the problem being
solved, but on the arch tecture of the computer
being used to solve it. To avoid unnecessary
overhead and delays, synchronization should be
minimized whenever possible. New mathematical
algorithms need to be designed with this in mind.
General schemes for solving parallel processing
problems will need to be modified to suit each
parallel processing environment. At present, the

programmer 1is almost totally responsible for finding

and explicitly declaring the parallel processing
capabllities of his Job. Eventually compilers will
assist, if not relieve, the programmer of that
responsibility. There are still many unknowns
concerning the suitability of computer
architectures, computer algorithms, and computer
software for solving the problems inherent in
parallel processing. Experimenting with parallel
processing will give some useful insights into the
problem.

REFERENCES

[1] "Multitasking User's Guide'", Cray Research,
Inc., Mendota Heights, MN Sn-0222

ra2] Werner, N.E., Van Matre, S.W., "Parallel
Processing on the Livermore VAX 11/780-14
Parallel Processor System with Compatibility
to Cray Research, Inc. (CRI) Multitasking",
Version 1, UCRL-92624, May 1985

DATA:

Appendix A

BARRIER METHOD E

3 pairs of integers, ordered,

{THIS,NEXT,LAST>
Synchronization variable
Event flag number

Number of TASKs = number of TASKs

-7 synchronizing

INITIALIZATION:

Set Synchronization variable(s) to
Number_of TASKs
Clear event flags = Event flag number(s)
Initlialize the order of the data items
THIS = now
NEXT next £o be used
LAST last one used before now

[}

SYNCHRONIZE:

RESET:

Decrement (interlocked)
THIS Synchronization variable

If THIS Synchronization variable not = 0,
then wait for THIS Event flag number

Otherwise Post THIS Event flag number

Set LAST Synchronization variable to
Number_of TASKs
Clear LAST Event flag number
Rotate the order of the Data Items
THIS <-- NEXT

<{-- LAST

4+

-9-

BARRIER METHOD S

DATA

3 ordered integers, <THIS,NEXT,LAST>
Number of TASKs = number of TASKs
synchronizing

INITIALIZATION:

Set Synchronization variable(s) to
T Number_of TASKs
Initialize the order of the data items
THIS = now
NEXT next to be used
LAST last one used before now

W

]

SYNCHRONIZE :

Decrement (interlocked) THIS
Synchronization variable

Test THIS Synchronization variable
until THIS Synchronization variable = 0

RESET:

Set LAST Synchronization variable to

Number_of TASKs
Rotate the order of the Data Items

THIS <-- NEXT <-- LAST
| +

Appendix B

BARRIER METHOD USING
THE PARALLEL PROCESSING LIBRARY

DATA:
C Array of 3 ordered event flag numbers for
C each participating TASK
Integer Event numbers(3, Number_of TASKs)
Integer THIS,NEXT,LAST
Integer Number of TASKs, Task_id
Number_pf_TASKs = number of Tasks
synchronizing
Task_id = This TASK's identification number
where 0 < Task_id < Number_of TASKs + 1
INITIALIZATION:
C Clear this TASK's event flags
DOI =1, 3
Call Evclear (Event numbers(I, Task_id))
End do
C Initialize the order of the data items
THIS = 0 ; wuse now
NEXT = 1 ; next to be used
LAST = 2 ; last one used before now
SYCHRONIZE:
C Signal that this Task is ready
Call Evpost (THIS, Task_id)
C Wait for all Tasks
Do I =1, Number_pf_TASKs
Call Evwait (THIS, I)
End Do
RESET:

Reset appropriate last signal
Call Evclear (LAST, Task id)

Rotate Data Items

LAST = THIS

THIS = IMod (THIS + 1, 3)
NEXT = IMod (THIS + 1, 3)
Return

-10-

